Isometries in hyperbolic spaces
Isometries in hyperbolic spaces作者机构:Department of MathematicsHunan Normal UniversityChangsha 410081China Hua Loo-Keng Key Laboratory of MathematicsAcademy of Mathematics and System ScienceChinese Academy of SciencesBeijing 100190China
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2010年第53卷第1期
页 面:71-86页
核心收录:
基 金:supported by National Natural Science Foundation of China (Grant No.10771059) Tianyuan Foundation
主 题:surjective map geodesic hyperplane isometry M¨obius transformation
摘 要:Suppose that f:Hn → Hn (n≥2) maps any r-dimensional hyperplane (1≤rn) into an r-dimensional hyperplane. In this paper, we prove that f is an isometry if and only if f is a surjective map. This result gives an affirmative answer to a recent conjecture due to Li and Yao.