咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Isometries in hyperbolic space... 收藏

Isometries in hyperbolic spaces

Isometries in hyperbolic spaces

作     者:HUANG ManZi WANG XianTao WANG YueFei 

作者机构:Department of MathematicsHunan Normal UniversityChangsha 410081China Hua Loo-Keng Key Laboratory of MathematicsAcademy of Mathematics and System ScienceChinese Academy of SciencesBeijing 100190China 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2010年第53卷第1期

页      面:71-86页

核心收录:

学科分类:07[理学] 08[工学] 

基  金:supported by National Natural Science Foundation of China (Grant No.10771059) Tianyuan Foundation 

主  题:surjective map geodesic hyperplane isometry M¨obius transformation 

摘      要:Suppose that f:Hn → Hn (n≥2) maps any r-dimensional hyperplane (1≤rn) into an r-dimensional hyperplane. In this paper, we prove that f is an isometry if and only if f is a surjective map. This result gives an affirmative answer to a recent conjecture due to Li and Yao.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分