咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >A Large-update Interior-point ... 收藏

A Large-update Interior-point Algorithm for Convex Quadratic Semi-definite Optimization Based on a New Kernel Function

A Large-update Interior-point Algorithm for Convex Quadratic Semi-definite Optimization Based on a New Kernel Function

作     者:Ming Wang ZHANG 

作者机构:College of ScienceChina Three Gorges University 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2012年第28卷第11期

页      面:2313-2328页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Supported by Natural Science Foundation of Hubei Province of China (Grant No. 2008CDZ047) 

主  题:Convex quadratic semi-definite optimization kernel function interior-point algorithm^large-update method complexity 

摘      要:In this paper, we present a large-update interior-point algorithm for convex quadratic semi-definite optimization based on a new kernel function. The proposed function is strongly convex. It is not self-regular function and also the usual logarithmic function. The goal of this paper is to investigate such a kernel function and show that the algorithm has favorable complexity bound in terms of the elegant analytic properties of the kernel function. The complexity bound is shown to be O(√n(logn)2 log e/n). This bound is better than that by the classical primal-dual interior-point methods based on logarithmic barrier function and in optimization fields. Some computational results recent kernel functions introduced by some authors have been provided.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分