咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Extract Rules by Using Rough S... 收藏

Extract Rules by Using Rough Set and Knowledge-Based NN

Extract Rules by Using Rough Set and Knowledge-Based NN

作     者:王士同 E.Scott  

作者机构:DepartmentofComputerEastChinaShipbuildingInstituteZhenjiang212003PR.China DepartmentofComputerRo 

出 版 物:《Journal of Computer Science & Technology》 (计算机科学技术学报(英文版))

年 卷 期:1998年第13卷第3期

页      面:279-284页

核心收录:

学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0808[工学-电气工程] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0701[理学-数学] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:Rough set theory ,knowledge-based NN (neural network) knowledge discovery machine learning 

摘      要:In this paper, rough set theory is used to extract roughly-correct inference rules from information systems. Based on this idea, the learning algorithm ERCR is presented. In order to refine the learned roughly-correct inference rules, the knowledge-based neural network is used. The method presented here sufficiently combines the advanages of rough set theory and neural network.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分