Extract Rules by Using Rough Set and Knowledge-Based NN
Extract Rules by Using Rough Set and Knowledge-Based NN作者机构:DepartmentofComputerEastChinaShipbuildingInstituteZhenjiang212003PR.China DepartmentofComputerRo
出 版 物:《Journal of Computer Science & Technology》 (计算机科学技术学报(英文版))
年 卷 期:1998年第13卷第3期
页 面:279-284页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 0808[工学-电气工程] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0701[理学-数学] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Rough set theory ,knowledge-based NN (neural network) knowledge discovery machine learning
摘 要:In this paper, rough set theory is used to extract roughly-correct inference rules from information systems. Based on this idea, the learning algorithm ERCR is presented. In order to refine the learned roughly-correct inference rules, the knowledge-based neural network is used. The method presented here sufficiently combines the advanages of rough set theory and neural network.