Ferronickel enrichment by fine particle reduction and magnetic separation from nickel laterite ore
Ferronickel enrichment by fine particle reduction and magnetic separation from nickel laterite ore作者机构:School of Metallurgical and Ecological Engineering University of Science and TechnologyBeijing Hebei Iron and Steel Co. Ltd.Tangshan Branch Tianjin Pipe Group Co. Ltd.
出 版 物:《International Journal of Minerals,Metallurgy and Materials》 (矿物冶金与材料学报(英文版))
年 卷 期:2014年第21卷第10期
页 面:955-961页
核心收录:
学科分类:081902[工学-矿物加工工程] 0819[工学-矿业工程] 08[工学]
基 金:support by Tangshan Iron & Steel Co.Ltd. China
主 题:laterites ore reduction magnetic separation thermodynamics fine particle metallurgy
摘 要:Ferronickel enrichment and extraction from nickel laterite ore were studied through reduction and magnetic separation. Reduction experiments were performed using hydrogen and carbon monoxide as reductants at different temperatures (700-1000℃). Magnetic separa- tion of the reduced products was conducted using a SLon-100 cycle pulsating magnetic separator (1.2 T). Composition analysis indicates that the nickel laterite ore contains a total iron content of 22.50wt% and a total nickel content of 1.91wt%. Its mineral composition mainly con- sists of serpentine, hortonolite, and goethite. During the reduction process, the grade of nickel and iron in the products increases with in- creasing reduction temperature. Although a higher temperature is more favorable for reduction, the temperature exceeding 1000℃ results in sintering of the products, preventing magnetic separation. After magnetic separation, the maximum total nickel and iron concentrations are 5.43wt% and 56.86wt%, and the corresponding recovery rates are 84.38% and 53.76%, respectively.