Periodic Semifolded Solitary Waves for (2+1)-Dimensional Variable Coefficient Broer-Kaup System
Periodic Semifolded Solitary Waves for (2+1)-Dimensional Variable Coefficient Broer-Kaup System作者机构:College of Science Huzhou University Huzhou 313000 China Shanghai Institute of Mathematics and Mechanics Shanghai University Shanghai 200072 China
出 版 物:《Communications in Theoretical Physics》 (理论物理通讯(英文版))
年 卷 期:2008年第49卷第6期
页 面:1383-1388页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:National Natural Science Foundation of China under Grant Nos.10472063 and 10672096
主 题:variable coefficient Broer-Kaup system extended mapping method semifolded solitary wave
摘 要:Applying the extended mapping method via Riccati equation, many exact variable separation solutions for the (2&1 )-dimensional variable coefficient Broer-Kaup equation are obtained. Introducing multiple valued function and Jacobi elliptic function in the seed solution, special types of periodic semifolded solitary waves are derived. In the long wave limit these periodic semifolded solitary wave excitations may degenerate into single semifolded localized soliton structures. The interactions of the periodic semifolded solitary waves and their degenerated single semifolded soliton structures are investigated graphically and found to be completely elastic.