咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >BOUNDEDNESS OF STEIN'S SQUARE ... 收藏

BOUNDEDNESS OF STEIN'S SQUARE FUNCTIONS ASSOCIATED TO OPERATORS ON HARDY SPACES

BOUNDEDNESS OF STEIN'S SQUARE FUNCTIONS ASSOCIATED TO OPERATORS ON HARDY SPACES

作     者:闫雪芳 Xuefang YAN

作者机构:Department of MathematicsSun Yat-sen (Zhongshan) University College of Mathematics and Information ScienceHeibei Normal University 

出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))

年 卷 期:2014年第34卷第3期

页      面:891-904页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

主  题:Stein's square function non-negative self-adjoint operator Hardy spaces Davies- Gaffney estimate Plancherel type estimate 

摘      要:Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function Gδ(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces HL^p(X) to L^p(X) for all 0 〈 p ≤ 1.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分