BOUNDEDNESS OF STEIN'S SQUARE FUNCTIONS ASSOCIATED TO OPERATORS ON HARDY SPACES
BOUNDEDNESS OF STEIN'S SQUARE FUNCTIONS ASSOCIATED TO OPERATORS ON HARDY SPACES作者机构:Department of MathematicsSun Yat-sen (Zhongshan) University College of Mathematics and Information ScienceHeibei Normal University
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2014年第34卷第3期
页 面:891-904页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Stein's square function non-negative self-adjoint operator Hardy spaces Davies- Gaffney estimate Plancherel type estimate
摘 要:Let (X, d,μ) be a metric measure space endowed with a metric d and a nonnegative Borel doubling measure μ. Let L be a second order non-negative self-adjoint operator on L^2(X). Assume that the semigroup e^-tL generated by L satisfies the Davies-Gaffney estimates. Also, assume that L satisfies Plancherel type estimate. Under these conditions, we show that Stein's square function Gδ(L) arising from Bochner-Riesz means associated to L is bounded from the Hardy spaces HL^p(X) to L^p(X) for all 0 〈 p ≤ 1.