Unsupervised Linear Discriminant Analysis
Unsupervised Linear Discriminant Analysis作者机构:Inst.of Image Processing & Pattern RecognitionShanghai Jiaotong Univ Shanghai 200030 China Three Gorges Project Command of Armed Police Hydropower Eng.Troops Hubei 443133
出 版 物:《Journal of Shanghai Jiaotong university(Science)》 (上海交通大学学报(英文版))
年 卷 期:2006年第11卷第1期
页 面:40-42页
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 08[工学]
主 题:linear discriminant analysis(LDA) unsupervised learning neighbor graph
摘 要:An algorithm for unsupervised linear discriminant analysis was presented. Optimal unsupervised discriminant vectors are obtained through maximizing covariance of all samples and minimizing covariance of local k-nearest neighbor samples. The experimental results show our algorithm is effective.