Optimizing the low-pressure carburizing process of 16Cr3NiWMoVNbE gear steel
Optimizing the low-pressure carburizing process of 16Cr3NiWMoVNbE gear steel作者机构:State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyang 110819China Laboratory for Excellence in Advanced Steel ResearchDepartment of MetallurgicalMaterials and Biomedical EngineeringUniversity of Texas at El PasoEl PasoTX 79968USA
出 版 物:《Journal of Materials Science & Technology》 (材料科学技术(英文版))
年 卷 期:2019年第35卷第7期
页 面:1218-1227页
核心收录:
学科分类:0806[工学-冶金工程] 0817[工学-化学工程与技术] 08[工学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学] 0802[工学-机械工程] 0702[理学-物理学] 0801[工学-力学(可授工学、理学学位)]
基 金:financially supported by the National Key R&D Program of China (Grant No. 2016YFB0300600) the National Natural Science Foundation of China (Grant No. 51604074)
主 题:16Cr3NiWMoVNbE steel Low-pressure carburizing Saturated carbon concentration Carbon flux
摘 要:Compared with the traditional atm ospheric carburization, low-pressure carburization has the benefits of producing no surface oxidation and leaving fine, uniformly dispersed carbides in the carburized layer. However, the process param eters for low-pressure carburization of 16Cr3NiWMoVNbE steel have yet to be optimized. Thus, we use the saturation-value method to optimize these parameters for aviation-gear materials. Toward this end, the m icrostructure and properties of 16Cr3NiWMoVNbE steel after different carburization processes are studied by optical microscopy, scanning electron microscopy, transm ission electron microscopy, and electron probe microanalysis. Considering the saturated austenite carbon concentration, we propose a model of carbon flux and an alloy coefficient for low -pressure carburization to reduce the carbon concentration in austenite and avoid the surface carbide network. At the early stage of carburization (30 s), the gas-solid interface has a higher concentration gradient. The averaging method is not ideal in practical applications, but the carbon flux measured by using the segm ented average m ethod is 2.5 times that measured by the overall average method, which is ideal in practical applications. The corresponding carburization tim e is reduced by 60%. By using the integral average method, the actual carburization time increases, which leads to the rapid form ation of carbide on the surface and affects the entire carburization process. Nb and Wcombine with C to form carbides, which hinders carbon diffusion and consumes carbon, resulting in a sharp decrease in the rate of C diffusion in austenite (the diffusion rate is reduced by 52% for 16Cr3NiWMoVNbE steel). By changing the diffusion coefficient model and comparing the hardness gradient of different processes, the depth of the actual layer is found to be very similar to the design depth.