A UNIFORM GROWTH ESTIMATES OF SOLUTIONS OF ASYMPTOTICALLY ELLIPTIC OPERATORS
A UNIFORM GROWTH ESTIMATES OF SOLUTIONS OF ASYMPTOTICALLY ELLIPTIC OPERATORS作者机构:Institute of Mathematics Academia Sinica Beijing 100080 China
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:2000年第21卷第2期
页 面:259-268页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:National Natural Science Foundation of China
主 题:Harmonic functions Polynomial growth Eigenvalue Laplacian operator
摘 要:This paper introduces a generic eigenvalue flow of a parameter family of operators, where the corresponding eigenfunction is continuous in parameters. Then the author applies the result to the study of polynomial growth L-harmonic functions. Under the assumption that the operator has some weakly conic structures at infinity which is not necessarily unique, a Harnack type uniform growth estimate is obtained.