Hyperbolicity of elliptic Lagrangian orbits in the planar three body problem
Hyperbolicity of elliptic Lagrangian orbits in the planar three body problem作者机构:Department of MathematicsShandong University
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2014年第57卷第7期
页 面:1539-1544页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by National Natural Science Foundation of China (Grant No.11131004)
主 题:planar three-body problem Lagrangian solution hyperbolicity Maslov-type index
摘 要:The linear stability of Lagrangian elliptic equilateral triangle homographic solutions in the classical planar three body problem depends on the mass parameter β = 27(m1m2 + m2m3 + m3m1)/(m1 + m2 + m3)2∈ [0,9] and the eccentricity e ∈ [0,1).In this paper we use Maslov-type index to study the stability of these solutions and prove that the elliptic Lagrangian solutions is hyperbolic for β > 8 with any eccentricity.