咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Quadrilaterals, extremal quasi... 收藏

Quadrilaterals, extremal quasiconformal extensions and Hamilton sequences

Quadrilaterals, extremal quasiconformal extensions and Hamilton sequences

作     者:CHEN Zhi-guo ZHENG Xue-liang YAO Guo-wu 

作者机构:Department of Mathematics Zhejiang University Hangzhou 310028 China Department of Mathematics Taizhou College Linhai 317000 China Department of Mathematical Sciences Tsinghua University Beijing 100084 China 

出 版 物:《Applied Mathematics(A Journal of Chinese Universities)》 (高校应用数学学报(英文版)(B辑))

年 卷 期:2010年第25卷第2期

页      面:217-226页

核心收录:

学科分类:080904[工学-电磁场与微波技术] 07[理学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:Supported by the National Natural Science Foundation of China(10671174, 10401036) a Foundation for the Author of National Excellent Doctoral Dissertation of China(200518) 

主  题:Extremal quasiconformal mapping quasisymmetric mapping Hamilton sequence substantial boundary point. 

摘      要:The relationship between Strebel boundary dilatation of a quasisymmetric function h of the unit circle and the dilatation indicated by the change in the modules of the quadrilaterals with vertices on the circle intrigues many mathematicians. It had been a conjecture for some time that the dilatations Ko(h) and K1(h) of h are equal before Anderson and Hinkkanen disproved this by constructing concrete counterexamples. The independent work of Wu and of Yang completely characterizes the condition for Ko(h) = K1 (h) when h has no substantial boundary point. In this paper, we give a necessary and sufficient condition to determine the equality for h admitting a substantial boundary point.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分