ELLIPTIC GRADIENT ESTIMATES FOR DIFFUSION OPERATORS ON COMPLETE RIEMANNIAN MANIFOLDS
ELLIPTIC GRADIENT ESTIMATES FOR DIFFUSION OPERATORS ON COMPLETE RIEMANNIAN MANIFOLDS作者机构:School of Mathematics and StatisticsWuhan University Institut de Math'ematiques de ToulouseUniversit'e de Toulouse
出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))
年 卷 期:2010年第30卷第5期
页 面:1555-1560页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:China Scholarship Council for financial support(2007U13020)
主 题:gradient estimate Bakry-Emery curvature diffusion operator
摘 要:In this note, we obtain the elliptic estimate for diffusion operator L = △+△Ф·△ on complete, noncompact Riemannian manifolds, under the curvature condition CD(K, m), which generalizes B. L. Kotschwar's work [5]. As an application, we get estimate on the heat kernel. The Bernstein-type gradient estimate for SchrSdinger-type gradient is also derived.