咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Neural network based adaptive ... 收藏

Neural network based adaptive sliding mode control of uncertain nonlinear systems

Neural network based adaptive sliding mode control of uncertain nonlinear systems

作     者:Ghania Debbache Noureddine Goléa 

作者机构:Electrical Engineering Institute Oum El Bouaghi University 04000 Oum El Bouaghi Algeria 

出 版 物:《Journal of Systems Engineering and Electronics》 (系统工程与电子技术(英文版))

年 卷 期:2012年第23卷第1期

页      面:119-128页

核心收录:

学科分类:0711[理学-系统科学] 12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 071102[理学-系统分析与集成] 081103[工学-系统工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 

主  题:nonlinear system neural network sliding mode con- trol (SMC) adaptive control stability robustness. 

摘      要:The purpose of this paper is the design of neural network-based adaptive sliding mode controller for uncertain unknown nonlinear systems. A special architecture adaptive neural network, with hyperbolic tangent activation functions, is used to emulate the equivalent and switching control terms of the classic sliding mode control (SMC). Lyapunov stability theory is used to guarantee a uniform ultimate boundedness property for the tracking error, as well as of all other signals in the closed loop. In addition to keeping the stability and robustness properties of the SMC, the neural network-based adaptive sliding mode controller exhibits perfect rejection of faults arising during the system operating. Simulation studies are used to illustrate and clarify the theoretical results.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分