A NEW FAMILY OF TRIVALENT CAYLEY NETWORKS ON WREATH PRODUCT Z_m■S_n
A NEW FAMILY OF TRIVALENT CAYLEY NETWORKS ON WREATH PRODUCT Z_m■S_n作者机构:Key Laboratory of Network Security and Cryptology (Fujian Normal University) Fujian Province University Fuzhou 350007 China
出 版 物:《Journal of Systems Science & Complexity》 (系统科学与复杂性学报(英文版))
年 卷 期:2006年第19卷第4期
页 面:577-585页
核心收录:
学科分类:0810[工学-信息与通信工程] 1205[管理学-图书情报与档案管理] 07[理学] 070104[理学-应用数学] 0811[工学-控制科学与工程] 0701[理学-数学] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Cayley graph connectivity diameter interconnection network routing
摘 要:We propose a new family of interconnection networks (WGn^m) with regular degree three. When the generator set is chosen properly, they are isomorphic to Cayley graphs on the wreath product Zm ~ Sn. In the case of m ≥ 3 and n ≥3, we investigate their different algebraic properties and give a routing algorithm with the diameter upper bounded by [m/2](3n^2- 8n + 4) - 2n + 1. The connectivity and the optimal fault tolerance of the proposed networks are also derived. In conclusion, we present comparisons of some familiar networks with constant degree 3.