Nonabelian Jacobian of smooth projective surfaces-a survey
Nonabelian Jacobian of smooth projective surfaces-a survey作者机构:Département de Mathématiquesl'Université d'Angers2 Boulevard Lavoisier49045 Angers Cedex 01France
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2013年第56卷第1期
页 面:1-42页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Jacobian Hilbert scheme vector bundle
摘 要:The nonabelian Jacobian J(X;L,d) of a smooth projective surface X is inspired by the classical theory of Jacobian of *** is built as a natural scheme interpolating between the Hilbert scheme X [d] of subschemes of length d of X and the stack M X(2,L,d) of torsion free sheaves of rank 2 on X having the determinant OX(L) and the second Chern class(= number) *** relates to such influential ideas as variations of Hodge structures,period maps,nonabelian Hodge theory,Homological mirror symmetry,perverse sheaves,geometric Langlands *** relations manifest themselves by the appearance of the following structures on J(X;L,d):1) a sheaf of reductive Lie algebras;2)(singular) Fano toric varieties whose hyperplane sections are(singular) Calabi-Yau varieties;3) trivalent *** is an expository paper giving an account of most of the main properties of J(X;L,d) uncovered in Reider 2006 and ArXiv:1103.4794v1.