Bifurcation Problems for a Class of Degenerate Quasilinear Elliptic Equations
Bifurcation Problems for a Class of Degenerate Quasilinear Elliptic Equations作者机构:Department of Mathematics Hunan City University Yiyang 413049 China Department of Mathematics Changsha University of Science and Technology Changsha 410076 China Department of Mathematics Central South University Changsha 410075 China
出 版 物:《Acta Mathematicae Applicatae Sinica》 (应用数学学报(英文版))
年 卷 期:2010年第26卷第3期
页 面:395-404页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by the National Natural Science Foundation of China (No. 10671211)
主 题:Quasilinear elliptic equation bifurcation principal eigenvalue
摘 要:In this paper we consider the bifurcation problem -div A(x, u)=λa(x)|u|^p-2u+f(x,u,λ) in Ω with p 〉 *** some proper assumptions on A(x,ξ),a(x) and f(x,u,λ),we show that the existence of an unbounded branch of positive solutions bifurcating Irom the principal eigenvalue of the problem --div A(x, u)=λa(x)|u|^p-2u.