咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Bifurcation Problems for a Cla... 收藏

Bifurcation Problems for a Class of Degenerate Quasilinear Elliptic Equations

Bifurcation Problems for a Class of Degenerate Quasilinear Elliptic Equations

作     者:Yun-xiang Li Yu Ye Fang-li Xia 

作者机构:Department of Mathematics Hunan City University Yiyang 413049 China Department of Mathematics Changsha University of Science and Technology Changsha 410076 China Department of Mathematics Central South University Changsha 410075 China 

出 版 物:《Acta Mathematicae Applicatae Sinica》 (应用数学学报(英文版))

年 卷 期:2010年第26卷第3期

页      面:395-404页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Supported by the National Natural Science Foundation of China (No. 10671211) 

主  题:Quasilinear elliptic equation bifurcation principal eigenvalue 

摘      要:In this paper we consider the bifurcation problem -div A(x, u)=λa(x)|u|^p-2u+f(x,u,λ) in Ω with p 〉 *** some proper assumptions on A(x,ξ),a(x) and f(x,u,λ),we show that the existence of an unbounded branch of positive solutions bifurcating Irom the principal eigenvalue of the problem --div A(x, u)=λa(x)|u|^p-2u.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分