Universal Enveloping Algebras of Simple Symplectic Anti-Jordan Triple Systems
Universal Enveloping Algebras of Simple Symplectic Anti-Jordan Triple Systems作者机构:University of Toronto (Mississauga Campus) Mathematical and Computational Sciences3359 Mississauga Rd. N Mississauga ON L5L 1C6 Canada
出 版 物:《Algebra Colloquium》 (代数集刊(英文版))
年 卷 期:2015年第22卷第2期
页 面:281-292页
核心收录:
学科分类:07[理学] 08[工学] 070104[理学-应用数学] 0835[工学-软件工程] 0701[理学-数学] 081202[工学-计算机软件与理论] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:anti-Jordan triple systems universal enveloping algebras central elements,PBW-bases
摘 要:In this work we axe concerned with the universal associative envelope of a finite-dimensional simple symplectic anti-Jordan triple system (AJTS). We prove that if T is a triple system as above, then there exists an associative algebra U(T) and an injective homomorphism ε : T→ U(T), where U(T) is an AJTS under the triple product defined by (a, b, c) = abc- cba. Moreover, U(T) is a universal object with respect to such homomorphisms. We explicitly determine the PBW-basis of U(T), the center Z(U(T)) and the Gelfand-Kirillov dimension of U(T).