咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Rigidity of closed submanifold... 收藏

Rigidity of closed submanifolds in a locally symmetric Riemannian manifold

Rigidity of closed submanifolds in a locally symmetric Riemannian manifold

作     者:GU Juan-ru LENG Yan XU Hong-wei 

作者机构:Department of Applied Mathematics Zhejiang University of Technology Hangzhou 310023 China Center of Mathematical Sciences Zhejiang University Hangzhou 310027 China 

出 版 物:《Applied Mathematics(A Journal of Chinese Universities)》 (高校应用数学学报(英文版)(B辑))

年 卷 期:2016年第31卷第2期

页      面:237-252页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

基  金:Supported by the National Natural Science Foundation of China(11531012,11371315,11301476) the TransCentury Training Programme Foundation for Talents by the Ministry of Education of China the Postdoctoral Science Foundation of Zhejiang Province(Bsh1202060) 

主  题:Submanifold Ejiri rigidity theorem Ricci curvature Mean curvature. 

摘      要:Let Mn(n ≥ 4) be an oriented closed submanifold with parallel mean curvature in an (n + p)-dimensional locally symmetric Riemannian manifold Nn+p. We prove that if the sectional curvature of N is positively pinched in [5, 1], and the Ricci curvature of M satisfies a pinching condition, then M is either a totally umbilical submanifold, or δ= 1, and N is of constant curvature. This result generalizes the geometric rigidity theorem due to Xu and Gu [15].

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分