咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >The Defocusing Energy-supercri... 收藏

The Defocusing Energy-supercritical Hartree Equation

The Defocusing Energy-supercritical Hartree Equation

作     者:Ji Qiang ZHENG 

作者机构:The Graduate School of China Academy of Engineering Physics 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2014年第30卷第4期

页      面:547-566页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学] 

主  题:Havtree equation scattering theory Strichartz estimate energy supercritical concentration compactness 

摘      要:In this paper, we study the global well-posedness and scattering problem for the energy -supercritical Hartree equation iut + △u - (|χ|^-r* |u|^2)u = 0 with r〉 4 in dimension d 〉r. We prove that if the solution u is apriorily bounded in the critical Sobolev space, that is, u ∈ Lt^∞(I;Hx^sc(R^d)) with Sc := x/2 - 1 〉 1, then u is global and scatters. The impetus to consider this problem stems from a series of recent works for the energy-supercritical nonlinear wave equation (NLW) and nonlinear SchrSdinger equation (NLS). We utilize the strategy derived from concentration compactness ideas to show that the proof of the global well-posedness and scattering is reduced to disprove the existence of three scenarios: finite time blowup; soliton-like solution and low to high frequency cascade. Making use of the No-waste Duhamel formula, we deduce that the energy of the finite time blow-up solution is zero and so get a contradiction. Finally, we adopt the double Duhamel trick, the interaction Morawetz estimate and interpolation to kill the last two scenarios.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分