THE RATES OF CONVERGENCE OF M-ESTIMATORS FOR PARTLY LINEAR MODELS IN DEPENDENT CASES
LUSTERNIK-SCHNIRELMANN CATEGORY AND EMBEDDING FINITE COVERING MAPS,PRINCIPAL G-BUNDLES INTO BUNDLES作者机构:BEIJING UNIVDEPT PROBABIL & STATBEIJING 100871PEOPLES R CHINA UNIV SCI & TECHNOL CHINAGRAD SCHBEIJING 100039PEOPLES R CHINA
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:1996年第17卷第3期
页 面:317-324页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:Lusternik-Schnirelmann category Finite covering map Principal G-bundle
摘 要:The author proves several embedding theorems for finite covering maps, principal G-bundlesinto bundles. The main results are1. Let π: E→X be a finite covering mapt and X a connected locally pathconnectedparacompact space. If cat X≤5 k, then the finite covering space π: E→X can be embeddedinto the trivial real k-plane bundle.2. Let x: E→ X be a principal G-bundle over a paracompact space. If there exists alinear action of G on F (F = R or C) and cat X≤ k, then π: E→X can be embedded intofor any F-vector bundles ζi, i = 1,’’’ k.