K-quasi-additive fuzzy integrals of set-valued mappings
K-quasi-additive fuzzy integrals of set-valued mappings作者机构:School of Mathematics Science Tianjin Normal University Tianjin 300074 China School of Management Tianjin Normal University Tianjin 300074 China
出 版 物:《Progress in Natural Science:Materials International》 (自然科学进展·国际材料(英文))
年 卷 期:2006年第16卷第2期
页 面:125-132页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0701[理学-数学] 0702[理学-物理学]
基 金:National Natural Science Foundation of China (Grant No. 70571056)
主 题:set-valued mapping inductive operator integrable selections K-quasi-additive fuzzy integrals.
摘 要:We first define the quasi-addition and quasi-multiplication operations by introducing the inductive operator, and then, in the K-quasi-additive fuzzy measure space, we establish the K-quasi-additive fuzzy integral of a generally measurable set-valued mapping. Applying the integral transformation theorem, some basic properties of the K-quasi-additive fuzzy integrals with respect to this kind of set-valued mapping are studied. Finally, the generalized monotone convergence theorems of this kind of fuzzy integrals are obtained.