Ritt's theorem and the Heins map in hyperbolic complex manifolds
Ritt's theorem and the Heins map in hyperbolic complex manifolds作者机构:Dipartimento di Matematica Università di PisaLargo Pontecorvo 556127 PisaItalyDipartimento di Matematica Università di Roma "Tor Vergata"Via della Ricerca Scientifica00133 RomaItaly
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2005年第48卷第Z1期
页 面:238-243页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:Ministero dell’Istruzione dell’Università e della Ricerca MIUR
主 题:holomorphic self-map, fixed point, Wolff point, Ritt's theorem, Heins map, Stein manifold.
摘 要:Let X be a Kobayashi hyperbolic complex manifold, and assume that X does not contain compact complex submanifolds of positive dimension (e.g., X Stein). We shall prove the following generalization of Ritt s theorem: every holomorphic self-map f: X →X such that f(X) is relatively compact in X has a unique fixed point τ(f) ∈ X, which is attracting. Furthermore, we shall prove that τ(f) depends holomorphically on f in a suitable sense, generalizing results by Heins, Joseph-Kwack and the second author.