The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey
The Feasibility of Constraining Dark Energy Using LAMOST Redshift Survey作者机构:Department of Astronomy Peking University Beijing 100871
出 版 物:《Chinese Journal of Astronomy and Astrophysics》 (中国天文和天体物理学报(英文版))
年 卷 期:2006年第6卷第2期
页 面:155-164页
核心收录:
学科分类:0709[理学-地质学] 07[理学] 0708[理学-地球物理学] 070401[理学-天体物理] 0704[理学-天文学] 0825[工学-航空宇航科学与技术]
基 金:Supported by the National Natural Science Foundation of China
主 题:Cosmology: theory galaxies: distances and redshifts galaxy clustering large scale structure of Universe
摘 要:We consider using future redshift surveys with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) to constrain the equation of state of dark energy w. We analyze the Alcock & Paczynski (AP) effect imprinted on the two-point correlation function of galaxies in redshift space. The Fisher matrix analysis is applied to estimate the expected error bounds of w0 and wα from galaxy redshift surveys, w0 and wα being the two parameters in the equation of state parametrization w(z) = w0 + wαz/(1 + z). Strong degeneracies between w0 and wα are found. The direction of the degeneracy in w0 - wα plane, however, rotates counter-clockwise as the redshift increases. LAMOST can potentially contribute in the redshift range up to 0.5. In combination with other high redshift surveys, such as the proposed Kilo-Aperture Optical Spectrograph project (KAOS), the joint constraint derived from galaxy surveys at different redshift ranges is likely to efficiently break the degeneracy of w0 and wα. We do not anticipate that the nature of dark energy can be well constrained with LAMOST alone, but it may help to reduce the error bounds expected from other observations, such as the Supernova/Acceleration Probe (SNAP).