Lipschitz Continuous Solutions to the Cauchy Problem for Quasi-linear Hyperbolic Systems
Lipschitz Continuous Solutions to the Cauchy Problem for Quasi-linear Hyperbolic Systems作者机构:School of Mathematical Sciences Fudan University Shanghai 200433 China.
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:2012年第33卷第4期
页 面:521-536页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
主 题:First order quasi-linear hyperbolic systems Lipschitz continuous solution Cauchy problem Existence and uniqueness
摘 要:Lipschitz continuous solutions to the Cauchy problem for 1-D first order quasi-linear hyperbolic systems are considered. Based on the methods of approximation and integral equations, the author gives two definitions of Lipschitz solutions to the Cauchy problem and proves the existence and uniqueness of solutions.