The Smoothness of Scattering Operators for Sinh-Gordon and Nonlinear Schrodinger Equations
The Smoothness of Scattering Operators for Sinh-Gordon and Nonlinear Schrodinger Equations作者机构:Department of Mathematics Hebei University Baoding P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2002年第18卷第3期
页 面:549-564页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Supported by the National Natural Science Foundation of China. Grant 19901007
主 题:Sinh-Gordon equation Nolinear Schrodinger equation The smoothness of scattering operator
摘 要:We show that the scattering operator carries a band in H^s (R^n)×H^(s-1)(R^n) into H^s (R^n)× H^(s-1)(R^n) for the sinh-Gordon equation and an analogous result also holds true for the nonlinear Schrdinger equation with an exponential nonlinearity, where s≥n/2 is arbitrary and n≥2. Therefore, the scattering operators are infinitely smooth for the above two equations.