基于光谱特征空间的农田植被区土壤湿度遥感监测
Soil moisture monitoring of vegetative area in farmland by remote sensing based on spectral feature space作者机构:北京大学遥感与地理信息系统研究所北京100871 北京跟踪与通信技术研究所北京100094 中国科学院遥感与数字地球研究所北京100094
出 版 物:《农业工程学报》 (Transactions of the Chinese Society of Agricultural Engineering)
年 卷 期:2014年第30卷第16期
页 面:106-112页
核心收录:
学科分类:082804[工学-农业电气化与自动化] 08[工学] 0828[工学-农业工程] 09[农学] 0903[农学-农业资源与环境]
摘 要:土壤湿度遥感动态监测在农业生产中具有重要作用。近年来,多种基于光谱特征空间的土壤水分监测指数被陆续提出,并得到广泛关注和应用,但当前多数监测指数未考虑混合像元的影响。该文针对垂直干旱指数(perpendicular drought index,PDI)在农田植被覆盖区监测精度降低问题,分析了植被覆盖下的PDI误差分布规律,引入垂直植被指数(perpendicular vegetation index,PVI)作为植被覆盖表征量,在PVI-PDI二维空间对PDI模型进行调整,提出了适于植被覆盖的植被调整垂直干旱指数(vegetation adjusted perpendicular drought index,VAPDI),并利用内蒙古明安镇研究区实测土壤湿度数据,对PDI与VAPDI进行了比较和验证。结果表明,在裸土、麦茬、土豆、豇豆4种植被覆盖类型中,PDI与土壤实测含水率的决定系数分别为0.630、0.504、0.571、0.543,VAPDI与土壤实测含水率的决定系数分别为0.599、0.523、0.602、0.585。VAPDI在植被区的误差略小于PDI,一定程度上克服了植被覆盖对监测精度的影响。通过PDI和VAPDI空间分布图的比较也说明,VAPDI对土壤湿度的差别有更好的区分能力,在中尺度土壤表层水分遥感反演方面具有一定的优势。该研究可为农田土壤湿度遥感监测方法选择及监测误差分析提供参考依据。