Quasi-hydrostatic Primitive Equations for Ocean Global Circulation Models
Quasi-hydrostatic Primitive Equations for Ocean Global Circulation Models作者机构:Laboratoire MAPMO (UMR 6628) Fédération Denis Poisson (FDP-FR2964) Université d'OrléansBtiment de Mathématiques-Route de Chartres B. P. 6759 45067 Orléans Cedex 2 France Laboratoire de Mathématiques et Applications Téléport 2-B. P. 30179 Boulevard Marie et Pierre Curie 86962 Futuroscope Chasseneuil Cedex France INRIA Laboratoire Jean Kuntzmann 51 rue des Mathématiques B. P. 53 38041 Grenoble Cedex 9France
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:2010年第31卷第6期
页 面:939-952页
核心收录:
学科分类:07[理学] 0707[理学-海洋科学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by the ANR (No. ANR-06-BLAN0306-01) the National Science Foundation (No.NSF-DMS-0906440) and the Research Fund of Indiana University
主 题:Hydrostatic approximation Coriolis force Ocean global circulation models Primitive equations Traditional approximation
摘 要:Global existence of weak and strong solutions to the quasi-hydrostatic primitive equations is studied in this paper. This model, that derives from the full non-hydrostatic model for geophysical fluid dynamics in the zero-limit of the aspect ratio, is more realistic than the classical hydrostatic model, since the traditional approximation that consists in neglecting a part of the Coriolis force is relaxed. After justifying the derivation of the model, the authors provide a rigorous proof of global existence of weak solutions, and well-posedness for strong solutions in dimension three.