Interpolation by G^(2) Quintic Pythagorean-Hodograph Curves
作者机构:FMFUniversity of Ljubljanaand IAMUniversity of PrimorskaJadranska 191000 LjubljanaSlovenia FMF and IMFMUniversity of LjubljanaJadranska 191000 LjubljanaSlovenia FAMNIT and IAMUniversity of PrimorskaMuzejski trg 26000 KoperSlovenia
出 版 物:《Numerical Mathematics(Theory,Methods and Applications)》 (高等学校计算数学学报(英文版))
年 卷 期:2014年第7卷第3期
页 面:374-398页
核心收录:
学科分类:0820[工学-石油与天然气工程] 07[理学] 0714[理学-统计学(可授理学、经济学学位)] 0701[理学-数学] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 070101[理学-基础数学]
主 题:Pythagorean-hodograph curve Hermite interpolation geometric continuity nonlinear analysis homotopy
摘 要:In this paper,the G^(2) interpolation by Pythagorean-hodograph(PH)quintic curves in R^(d),d≥2,is *** obtained results turn out as a useful tool in practical *** of the dimension d,they supply a G^(2) quintic PH spline that locally interpolates two points,two tangent directions and two curvature vectors at these *** interpolation problem considered is reduced to a system of two polynomial equations involving only tangent lengths of the interpolating curve as *** several solutions might exist,the way to obtain the most promising one is suggested based on a thorough asymptotic analysis of the smooth data *** numerical algorithm traces this solution from a particular set of data to the general case by a homotopy continuation *** examples confirm the efficiency of the proposed method.