GALERKIN BOUNDARY NODE METHOD FOR EXTERIOR NEUMANN PROBLEMS
GALERKIN BOUNDARY NODE METHOD FOR EXTERIOR NEUMANN PROBLEMS作者机构:College of Mathematics Science Chongqing Normal University Chongqing ~000~7 China College of Mathematics and Physics Chongqing University Chongqing 400044 China
出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))
年 卷 期:2011年第29卷第3期
页 面:243-260页
核心收录:
学科分类:080804[工学-电力电子与电力传动] 080805[工学-电工理论与新技术] 0808[工学-电气工程] 07[理学] 08[工学] 070104[理学-应用数学] 0701[理学-数学]
基 金:Educational Commission Foundation of Chongqing China
主 题:Meshless Galerkin boundary node method Boundary integral equations Moving least-squares Error estimate.
摘 要:In this paper, we present a meshless Galerkin scheme of boundary integral equations (BIEs), known as the Galerkin boundary node method (GBNM), for two-dimensional ex- terior Neumann problems that combines the moving least-squares (MLS) approximations and a variational formulation of BIEs. In this approach, boundary conditions can be imple- mented directly despite the MLS approximations lack the delta function property. Besides, the GBNM keeps the symmetry and positive definiteness of the variational problems. A rigorous error analysis and convergence study of the method is presented in Sobolev spaces. Numerical examples are also given to illustrate the capability of the method.