咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Robust asymptotic stability fo... 收藏

Robust asymptotic stability for BAM neural networks with time-varying delays via LMI approach

Robust asymptotic stability for BAM neural networks with time-varying delays via LMI approach

作     者:LIU Jia ZONG Guang-deng ZHANG Yun-xi 

作者机构:Research Institute of Automation Qufu Normal University Qufu 273165 China School of Automation Nanjing University of Science & Technology Nanjing 210064 China 

出 版 物:《Applied Mathematics(A Journal of Chinese Universities)》 (高校应用数学学报(英文版)(B辑))

年 卷 期:2009年第24卷第3期

页      面:282-290页

核心收录:

学科分类:0711[理学-系统科学] 12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)] 071102[理学-系统分析与集成] 081103[工学-系统工程] 

基  金:Supported by the National Natural Science Foundation of China (60674027 60875039) Specialized Research Fund for the Doctoral Program of Higher Education (20050446001) Scientific Research Foundation of Qufu Normal University 

主  题:robust asymptotic stability bidirectional associative memory (BAM) neural networks timevarying delays linear matrix inequality(LMI) Lyapunov-Krasovskii functional 

摘      要:Several novel stability conditions for BAM neural networks with time-varying delays are *** on Lyapunov-Krasovskii functional combined with linear matrix inequality approach,the delay-dependent linear matrix inequality(LMI) conditions are established to guarantee robust asymptotic stability for given delayed BAM neural *** criteria can be easily verified by utilizing the recently developed algorithms for solving LMIs.A numerical example is provided to demonstrate the effectiveness and less conservatism of the main results.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分