咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >How to Detect and Remove Tempo... 收藏

How to Detect and Remove Temporal Autocorrelation in Vehicular Crash Data

How to Detect and Remove Temporal Autocorrelation in Vehicular Crash Data

作     者:Azad Abdulhafedh 

作者机构:University of Missouri-Columbia MO USA 

出 版 物:《Journal of Transportation Technologies》 (交通科技期刊(英文))

年 卷 期:2017年第7卷第2期

页      面:133-147页

学科分类:1002[医学-临床医学] 100214[医学-肿瘤学] 10[医学] 

主  题:Serial Correlation Durbin-Watson Breusch-Godfrey Ljung-Box Differencing Cochrane-Orcutt 

摘      要:Temporal autocorrelation (also called serial correlation) refers to the relationship between successive values (i.e. lags) of the same variable. Although it has long been a major concern in time series models, however, in-depth treatments of temporal autocorrelation in modeling vehicle crash data are lacking. This paper presents several test statistics to detect the amount of temporal autocorrelation and its level of significance in crash data. The tests employed are: 1) the Durbin-Watson (DW);2) the Breusch-Godfrey (LM);and 3) the Ljung-Box Q (LBQ). When temporal autocorrelation is statistically significant in crash data, it could adversely bias the parameter estimates. As such, if present, temporal autocorrelation should be removed prior to use the data in crash modeling. Two procedures are presented in this paper to remove the temporal autocorrelation: 1) Differencing;and 2) the Cochrane-Orcutt method.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分