Flood Risk for Embanked Rivers
作者机构:Institute of Meteorology and Water ManagementPodlesna 6101-673 WarsawPoland Institute of GeophysicsPolish Academy of SciencesKsiecia Janusza 6401-452 WarsawPoland
出 版 物:《Journal of Geoscience and Environment Protection》 (地球科学和环境保护期刊(英文))
年 卷 期:2014年第2卷第3期
页 面:135-143页
学科分类:1002[医学-临床医学] 100214[医学-肿瘤学] 10[医学]
基 金:This research project was partly financed by the grant of the Polish National Science Centre titled“Modern statistical models for analysis of flood frequency and features of flood waves” decision nr DEC-2012/05/B/ST10/00482
主 题:Flood Frequency Analysis Levee Break Flood Duration Maximum Likelihood Nonstationarity
摘 要:Flood frequency analysis (FFA) concentrates on peak flows of flood hydrographs. However, floods that last years devastated large parts of Poland lead us to revision of the views on the assessment of flood risk in Poland. It turned out that it is the prolonged exposure to high water on levees that causes floods, not only the water overflowing the levee crest. This is because, the levees are weakened by water and their disruption occurs when it seems that the danger is over, i.e. after passing culmination. Two main causes of inundation of embanked rivers, namely over-crest flow and wash out of the levees, are combined to assess the total risk of inundation. Therefore the risk of inundation is the total of risk of exceeding embankment crest by flood peak and risk of washout of levees. Hence, while modeling the flood events in addition to the maximum flow one should consider also the duration of high water in a river channel, Analysis of the frequency of annual peak flows based on annual maxima and peaks over threshold is the subject of countless publications. Therefore we will here mainly modeling the duration of high water levels. In the paper the two-component model of flood hydrograph shape i.e. “duration of flooding-discharge- probability of nonexceedance (DqF), with the methodology of its parameters estimation for stationary case was developed as a completion to the classical FFA with possible extension to non stationary flood regime. The model combined with the technical evaluation of probability of levees breach due to the d-days duration of flow above alarm stage gives the annual probability of inundation caused by the embankment breaking. The results of theoretical research were supplemented by a practical example of the model application to the series for daily flow in the Vistula River in Szczucin. Regardless promising results, this method is still in its infancy despite its great cognitive potential and practical importance. Therefore, we would like to poi