咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Nonsingular Positon Solutions ... 收藏

Nonsingular Positon Solutions of a Variable-Coefficient Modified KdV Equation

Nonsingular Positon Solutions of a Variable-Coefficient Modified KdV Equation

作     者:Yi Lin Chuanzhong Li Jingsong He 

作者机构:Department of Mathematics Ningbo University Ningbo China 

出 版 物:《Open Journal of Applied Sciences》 (应用科学(英文))

年 卷 期:2013年第3卷第1期

页      面:102-105页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Variable-Coefficient KdV Equation Lax Pair Darboux Transformation Positon Soliton-Positon 

摘      要:The determinant representation of three-fold Darboux transformation for a variable-coefficient modified KdV equation is displayed based on the technique used to solve Ablowitz-Kaup-Newell-Segur system. Additionally, the nonsingular positon solutions of the variable-coefficient modified KdV equation are firstly discovered analytically and graphically.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分