咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Lie Symmetries of Klein-Gordon... 收藏

Lie Symmetries of Klein-Gordon and Schrodinger Equations

Klein-Gordon 和 Schr 的谎言对称 ? dinger 方程

作     者:Muhammad Iqbal Yufeng Zhang 

作者机构:College of MathematicsChina University of Mining and TechnologyXuzhouChina 

出 版 物:《Applied Mathematics》 (应用数学(英文))

年 卷 期:2018年第9卷第3期

页      面:336-346页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:supported by the National Natural Science Foundation of China(Grant No.11371361) the Innovation Team of Jiangsu Province hosted by China University of Mining and Technology(2014) the Key Discipline Construction by China University of Mining and Technology(Grant No.XZD 201602) 

主  题:Lie symmetries of Klein-Gordon Equation Lie Symmetries of Schrodinger Equation Noether Point Symmetries Of Conformal Lagrangian sl(2,R)Algebra Oscillator System 

摘      要:In this paper, we investigate the Lie point symmetries of Klein-Gordon equation and Schr?dinger equation by applying the geometric concept of Noether point symmetries for the below defined Lagrangian. Moreover, we organize a strong relationship among the Lie symmetries related to Klein-Gordon as well as Schr?dinger equations. Finally, we utilize the consequences of Lie point symmetries of Poisson and heat equations within Riemannian space to conclude the Lie point symmetries of Klein-Gordon equation and Schr?dinger equation within universal Riemannian space.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分