咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Fourier Pseudospectral Solutio... 收藏

Fourier Pseudospectral Solution for a 2D Nonlinear Paraxial Envelope Equation of Laser Interactions in Plasmas

Fourier Pseudospectral Solution for a 2D Nonlinear Paraxial Envelope Equation of Laser Interactions in Plasmas

作     者:Abdelrahman I. Mahdy Abdelrahman I. Mahdy

作者机构:Plasma and Nuclear Fusion Department Nuclear Research Centre Atomic Energy Authority Cairo Egypt 

出 版 物:《Journal of Applied Mathematics and Physics》 (应用数学与应用物理(英文))

年 卷 期:2016年第4卷第12期

页      面:2186-2202页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

主  题:Laser Plasmas Interactions Laser Envelope-Equation Fourier Pseudospectral Method Nonlinear Schrödinger Equation 

摘      要:We apply a Fourier pseudospectral algorithm to solve a 2D nonlinear paraxial envelope-equation of laser interactions in plasmas. In this algorithm, we first use the second order Strang time-splitting method to split the envelope-equation into a number of equations, next we spatially discrete the filed quantity and its spatial derivatives in these equations in term of Fourier interpolation polynomials (FFT), finally we sequentially integrate the resultant equations by means of a discrete integration method in order to obtain the solution of the envelope-equation. We carry out several numerical tests to illustrate the efficiency and to determine accuracy of the algorithm. In addition, we conduct a number of numerical experiments to examine its performance. The numerical results have shown that the algorithm is highly efficient and sufficiently accurate to solve the 2D envelope-equation, furthermore, it yields an optimal performance in simulating fundamental phenomena in laser interactions in plasmas.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分