D-IMPACT: A Data Preprocessing Algorithm to Improve the Performance of Clustering
D-IMPACT: A Data Preprocessing Algorithm to Improve the Performance of Clustering作者机构:Graduate School of Natural Science and Technology Kanazawa University Kanazawa Japan Institute of Science and Engineering Kanazawa University Kanazawa Japan
出 版 物:《Journal of Software Engineering and Applications》 (软件工程与应用(英文))
年 卷 期:2014年第7卷第8期
页 面:639-654页
学科分类:081203[工学-计算机应用技术] 08[工学] 0835[工学-软件工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
主 题:Attraction Clustering Data Preprocessing Density Shrinking
摘 要:In this study, we propose a data preprocessing algorithm called D-IMPACT inspired by the IMPACT clustering algorithm. D-IMPACT iteratively moves data points based on attraction and density to detect and remove noise and outliers, and separate clusters. Our experimental results on two-dimensional datasets and practical datasets show that this algorithm can produce new datasets such that the performance of the clustering algorithm is improved.