Lyapunov-Based Dynamic Neural Network for Adaptive Control of Complex Systems
Lyapunov-Based Dynamic Neural Network for Adaptive Control of Complex Systems作者机构:Unité de Recherche LARA Automatique Ecole Nationale d’Ingénieurs de Tunis (ENIT) Tunis Tunisia Unité de Recherche LARA Automatique Ecole Nationale d’Ingénieurs de Tunis (ENIT) Tunis Tunisia.
出 版 物:《Journal of Software Engineering and Applications》 (软件工程与应用(英文))
年 卷 期:2012年第5卷第4期
页 面:225-248页
学科分类:0711[理学-系统科学] 07[理学] 08[工学] 081101[工学-控制理论与控制工程] 0811[工学-控制科学与工程] 071102[理学-系统分析与集成] 081103[工学-系统工程]
主 题:Complex Dynamical Systems Lyapunov Approach Recurrent Neural Networks Adaptive Control
摘 要:In this paper, an adaptive neuro-control structure for complex dynamic system is proposed. A recurrent Neural Network is trained-off-line to learn the inverse dynamics of the system from the observation of the input-output data. The direct adaptive approach is performed after the training process is achieved. A lyapunov-Base training algorithm is proposed and used to adjust on-line the network weights so that the neural model output follows the desired one. The simulation results obtained verify the effectiveness of the proposed control method.