SPECTRAL CALCULATIONS OF HAMILTONIAN FOR A QUANTUM FRACTAL NETWORK
SPECTRAL CALCULATIONS OF HAMILTONIAN FOR A QUANTUM FRACTAL NETWORK作者机构:Wuhan University of Technology China State Key Lab. Adv. Technol. Mat. C. Wuhan University of Technology Wuhan 430070 China
出 版 物:《Journal of Wuhan University of Technology(Materials Science)》 (武汉理工大学学报(材料科学英文版))
年 卷 期:2000年第15卷第3期
页 面:33-40页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 081104[工学-模式识别与智能系统] 08[工学] 0835[工学-软件工程] 0811[工学-控制科学与工程] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:Supported by the National Natural Foundation of China (79970121)
主 题:fractal lattice special sierpinski gaskets collison operator
摘 要:A general formulation for the spectral calculations of the Hamiltonian operator of a Quantum Fractal Network (QFN) is presented. The QFN can be constructed by placing artificial neurons on each site of the fractal lattice. An artificial neuron may consist of a cell of a quantum cellular automaton or a quantum dot, which confines a single electron. The Coulomb interaction or the spin-spin interaction between neurons can be used to transmit signals and perform logic operations. The recursive formulas of the eigenvalues and eigenvectors between sub-lattices are obtained explicitly. As the application of the formulations, the eigenvalues and eigenvectors of the Hamiltonian operator for the Sierpinskii gasket are calculated.