咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >FINITE ELEMENT ANALYSIS OF A L... 收藏

FINITE ELEMENT ANALYSIS OF A LOCAL EXPONENTIALLYFITTED SCHEME FOR TIME-DEPENDENTCONVECTION-DIFFUSION PROBLEMS

FINITE ELEMENT ANALYSIS OF A LOCAL EXPONENTIALLY FITTED SCHEME FOR TIME-DEPENDENTCONVECTION-DIFFUSION PROBLEMS

作     者:Yue, XY Jiang, LS Shih, TM 

作者机构:Suzhou Univ Dept Math Suzhou 215006 Peoples R China Tongji Univ Inst Math Shanghai 200092 Peoples R China Hong Kong Polytech Univ Dept Appl Math Hong Kong Hong Kong 

出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))

年 卷 期:1999年第17卷第3期

页      面:225-232页

核心收录:

学科分类:07[理学] 070102[理学-计算数学] 0701[理学-数学] 

基  金:国家自然科学基金 

主  题:singularly perturbed exponentially fitted uniformly in epsilon convergent Petrov-Galerkin finite element method 

摘      要:In [16], Stynes and O Riordan(91) introduced a local exponentially fitted finite element (FE) scheme for a singularly perturbed two-point boundary value problem without turning-point. An E-uniform h(1/2)-order accuracy was obtain for the epsilon-weighted energy norm. And this uniform order is known as an optimal one for global exponentially fitted FE schemes (see [6, 7, 12]). In present paper, this scheme is used to a parabolic singularly perturbed problem. After some subtle analysis, a uniformly in epsilon convergent order h\ln h\(1/2) + tau is achieved (h is the space step and tau is the time step), which sharpens the results in present literature. Furthermore, it implies that the accuracy order in [16] is actuallay h\ln h\(1/2) rather than h(1/2).

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分