咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Binormal Operator and *-Aluthg... 收藏

Binormal Operator and *-Aluthge Transformation

Binormal Operator and *-Aluthge Transformation

作     者:Chang Sen YANG Yan Feng DING 

作者机构:College of Mathematics and Information Science He 'nan Normal University Xinxiang 453007 P. R. China 

出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))

年 卷 期:2008年第24卷第8期

页      面:1369-1378页

核心收录:

学科分类:08[工学] 080102[工学-固体力学] 0801[工学-力学(可授工学、理学学位)] 

基  金:Science Foundation of Minisitry of Education of China (No.208081) 

主  题:*-Aluthge transformation Aluthge transformation polar decomposition binormal operators centered operators 

摘      要:Let T = U|T| be the polar decomposition of a bounded linear operator T on a Hilbert space. The transformation T = |T|^1/2 U|T|^1/2 is called the Aluthge transformation and Tn means the n-th Aluthge transformation. Similarly, the transformation T(*)=|T*|^1/2 U|T*|&1/2 is called the *-Aluthge transformation and Tn^(*) means the n-th *-Aluthge transformation. In this paper, firstly, we show that T(*) = UV|T^(*)| is the polar decomposition of T(*), where |T|^1/2 |T^*|^1/2 = V||T|^1/2 |T^*|^1/2| is the polar decomposition. Secondly, we show that T(*) = U|T^(*)| if and only if T is binormal, i.e., [|T|, |T^*|]=0, where [A, B] = AB - BA for any operator A and B. Lastly, we show that Tn^(*) is binormal for all non-negative integer n if and only if T is centered, and so on.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分