Binormal Operator and *-Aluthge Transformation
Binormal Operator and *-Aluthge Transformation作者机构:College of Mathematics and Information Science He 'nan Normal University Xinxiang 453007 P. R. China
出 版 物:《Acta Mathematica Sinica,English Series》 (数学学报(英文版))
年 卷 期:2008年第24卷第8期
页 面:1369-1378页
核心收录:
学科分类:08[工学] 080102[工学-固体力学] 0801[工学-力学(可授工学、理学学位)]
基 金:Science Foundation of Minisitry of Education of China (No.208081)
主 题:*-Aluthge transformation Aluthge transformation polar decomposition binormal operators centered operators
摘 要:Let T = U|T| be the polar decomposition of a bounded linear operator T on a Hilbert space. The transformation T = |T|^1/2 U|T|^1/2 is called the Aluthge transformation and Tn means the n-th Aluthge transformation. Similarly, the transformation T(*)=|T*|^1/2 U|T*|&1/2 is called the *-Aluthge transformation and Tn^(*) means the n-th *-Aluthge transformation. In this paper, firstly, we show that T(*) = UV|T^(*)| is the polar decomposition of T(*), where |T|^1/2 |T^*|^1/2 = V||T|^1/2 |T^*|^1/2| is the polar decomposition. Secondly, we show that T(*) = U|T^(*)| if and only if T is binormal, i.e., [|T|, |T^*|]=0, where [A, B] = AB - BA for any operator A and B. Lastly, we show that Tn^(*) is binormal for all non-negative integer n if and only if T is centered, and so on.