咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >CHEBYSHEV WEIGHTED NORM LEAST-... 收藏

CHEBYSHEV WEIGHTED NORM LEAST-SQUARES SPECTRAL METHODS FOR THE ELLIPTIC PROBLEM

CHEBYSHEV WEIGHTED NORM LEAST-SQUARES SPECTRAL METHODS FOR THE ELLIPTIC PROBLEM

作     者:Sang Dong Kim Byeong Chun Shin 

作者机构:Department of Mathematics Kyungpook National University Taegu 702-701 Korea Department of Mathematics Chonnam National University Kwangju 500-757 Korea 

出 版 物:《Journal of Computational Mathematics》 (计算数学(英文))

年 卷 期:2006年第24卷第4期

页      面:451-462页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:This work was supported by Korea Research Foundation 

主  题:Least-squares methods Spectral method Negative norm. 

摘      要:We develop and analyze a first-order system least-squares spectral method for the second-order elhptic boundary value problem with variable coefficients. We first analyze the Chebyshev weighted norm least-squares functional defined by the sum of the Lw^2- and Hw^-1- norm of the residual equations and then we eplace the negative norm by the discrete negative norm and analyze the discrete Chebyshev weighted least-squares method. The spectral convergence is derived for the proposed method. We also present various numerical experiments. The Legendre weighted least-squares method can be easily developed by following this paper.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分