基于联合领域自适应卷积神经网络的多工况故障诊断
Measurement of Weld Pool Oscillation for Pulsed GTAW Based on Laser Vision作者机构:同济大学机械与能源工程学院上海201804 同济大学中德工程学院上海201804 云内动力股份有限公司昆明201804
出 版 物:《微型电脑应用》 (Microcomputer Applications)
年 卷 期:2019年第35卷第1期
页 面:4-9页
学科分类:08[工学] 0835[工学-软件工程] 081202[工学-计算机软件与理论] 0812[工学-计算机科学与技术(可授工学、理学学位)]
基 金:上海市软件和集成电路产业发展专项资金(RX-RJJC-02-16-0492) 同济大学青年优秀人才培养行动计划(2016KJ020) 2016年工信部智能制造综合标准化与新模式(2016ZXFM03002) 2016年工信部智能制造综合标准化与新模式<高效环保多缸小径柴油机智能制造新模式及示范>
主 题:故障诊断 迁移学习 领域自适应 卷积神经网络 深度学习
摘 要:近年来,基于深度学习的故障诊断方法取得了显著的成就。然而,传统的深度学习故障诊断方法都基于训练数据与测试数据来自相同的概率分布这一假设。在实际工业应用中,设备工作在复杂多变的工况下,难以保证训练数据与测试数据属于相同分布。当训练数据与测试数据属于不同工况时,训练后的模型在测试集中的准确率会明显下降。为了解决这个问题,提出了一种改进的深度迁移学习算法——联合领域自适应算法。通过最小化源域和目标域的边缘分布差异与条件边缘分布差异,联合领域自适应算法可以获得更强的知识迁移能力。将联合领域自适应算法与卷积神经网络(CNN)结合,提出了一种端到端的多工况故障诊断模型。最后,使用西储大学(Case Western Reserve University)的滚动轴承故障数据集进行实验。实验结果显示模型在多工况故障诊断中的表现优于传统的深度学习、数据驱动与迁移学习算法。