Wreath Hurwitz numbers,colored cut-and-join equations,and 2-Toda hierarchy
Wreath Hurwitz numbers,colored cut-and-join equations,and 2-Toda hierarchy作者机构:Department of Mathematical Sciences Tsinghua University Beijing 100084 China Email: zhanghanxiong @163. corn jzhou~math tsinghua edu. cn
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2012年第55卷第8期
页 面:1627-1646页
核心收录:
学科分类:12[管理学] 1201[管理学-管理科学与工程(可授管理学、工学学位)] 07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by National Natural Science Foundation of China(Grant Nos.10425101,10631050) National Basic Research Program of China(973Project)(Grant No.2006cB805905)
主 题:Hurwitz number wreath product cut-and-join equation integrable hierarchy
摘 要:Let G be arbitrary finite group,define H G· (t;p +,p) to be the generating function of G-wreath double Hurwitz *** prove that H G· (t;p +,p) satisfies a differential equation called the colored cutand-join ***,H G·(t;p +,p) is a product of several copies of tau functions of the 2-Toda hierarchy,in independent *** generalize the corresponding results for ordinary Hurwitz numbers.