咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >CONTACT PROCESS ON HEXAGONAL L... 收藏

CONTACT PROCESS ON HEXAGONAL LATTICE

CONTACT PROCESS ON HEXAGONAL LATTICE

作     者:姚强 李群昌 Yao Qiang Department of Statistics and Actuarial Science, School of Finance and Statistics, East China Normal University, Shanghai 200241, China Li Qunchang School of Mathematical Sciences, Peking University, Beijing 100871, China

作者机构:Department of Statistics and Actuarial Science School of Finance and Statistics East China Normal University School of Mathematical Sciences Peking University 

出 版 物:《Acta Mathematica Scientia》 (数学物理学报(B辑英文版))

年 卷 期:2010年第30卷第3期

页      面:769-790页

核心收录:

学科分类:07[理学] 070104[理学-应用数学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0704[理学-天文学] 0701[理学-数学] 

基  金:Supported in part by the NNSF of China (10531070,10625101) the National Basic Research Program of China (2006CB805900) 

主  题:Hexagonal lattice contact process critical value complete convergence theorem rate of growth 

摘      要:In this article, we discuss several properties of the basic contact process on hexagonal lattice H, showing that it behaves quite similar to the process on d-dimensional lattice Zd in many aspects. Firstly, we construct a coupling between the contact process on hexagonal lattice and the oriented percolation, and prove an equivalent finite space-time condition for the survival of the process. Secondly, we show the complete convergence theorem and the polynomial growth hold for the contact process on hexagonal lattice. Finally, we prove exponential bounds in the supercritical case and exponential decay rates in the subcritical case of the process.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分