Nonlinear network coding based on multiplication and exponentiation in GF(2~m)
Nonlinear network coding based on multiplication and exponentiation in GF(2~m)作者机构:PCN and SS Laboratory Department of Electronics Engineering and Science Information University of Science and Technology of China Hefei 230027 China
出 版 物:《The Journal of China Universities of Posts and Telecommunications》 (中国邮电高校学报(英文版))
年 卷 期:2009年第16卷第2期
页 面:53-57页
核心收录:
学科分类:080902[工学-电路与系统] 07[理学] 0809[工学-电子科学与技术(可授工学、理学学位)] 08[工学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by Xilinx University Program(XUP) Xilinx(China)Ltd the National Natural Science Foundation of China(60572066)
主 题:linear network code network information flow nonlinear network code
摘 要:This article proposes a novel nonlinear network code in the GF(2^m) finite field. Different from previous linear network codes that linearly mix multiple input flows, the proposed nonlinear network code mixes input flows through both multiplication and exponentiation in the GF(2^m). Three relevant rules for selecting discussed, and the relationship between the power parameter m proper parameters for the proposed nonlinear network code are and the coding coefficient K is explored. Further analysis shows that the proposed nonlinear network code is equivalent to a linear network code with deterministic coefficients.