Variable exponent Hardy spaces associated with discrete Laplacians on graphs
Variable exponent Hardy spaces associated with discrete Laplacians on graphs作者机构:Departamento de Análisis MatemáticoUniversidad de La Laguna Department of MathematicsNazarbayev University
出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))
年 卷 期:2019年第62卷第1期
页 面:73-124页
核心收录:
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by Spanish Government Grant(Grant No. MTM2016-79436-P) supported by Nazarbayev University Social Policy Grant
主 题:graphs discrete Laplacian Hardy spaces variable exponent square functions spectral multipliers
摘 要:In this paper we develop the theory of variable exponent Hardy spaces associated with discrete Laplacians on infinite graphs. Our Hardy spaces are defined by square integrals, atomic and molecular decompositions. Also we study boundedness properties of Littlewood-Paley functions, Riesz transforms, and spectral multipliers for discrete Laplacians on variable exponent Hardy spaces.