咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Convergence to diffusion waves... 收藏

Convergence to diffusion waves for solutions of Euler equations with time-depending damping on quadrant

Convergence to diffusion waves for solutions of Euler equations with time-depending damping on quadrant

作     者:Haibo Cui Haiyan Yin Changjiang Zhu Limei Zhu 

作者机构:School of Mathematical SciencesHuaqiao University School of MathematicsSouth China University of Technology 

出 版 物:《Science China Mathematics》 (中国科学:数学(英文版))

年 卷 期:2019年第62卷第1期

页      面:33-62页

核心收录:

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:supported by National Natural Science Foundation of China (Grant Nos. 11331005 11771150 11601164 and 11601165) 

主  题:Euler equations with time-depending damping nonlinear diffusion waves initial-boundary value problem decay estimates 

摘      要:This paper is concerned with the asymptotic behavior of the solution to the Euler equations with time-depending damping on quadrant(x,t)∈R^+×R^+,with the null-Dirichlet boundary condition or the null-Neumann boundary condition on u. We show that the corresponding initial-boundary value problem admits a unique global smooth solution which tends timeasymptotically to the nonlinear diffusion wave. Compared with the previous work about Euler equations with constant coefficient damping, studied by Nishihara and Yang(1999), and Jiang and Zhu(2009, Discrete Contin Dyn Syst), we obtain a general result when the initial perturbation belongs to the same space. In addition,our main novelty lies in the fact that the cut-off points of the convergence rates are different from our previous result about the Cauchy problem. Our proof is based on the classical energy method and the analyses of the nonlinear diffusion wave.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分