Witten's D_4 Integrable Hierarchies Conjecture
Witten's D_4 Integrable Hierarchies Conjecture作者机构:School of Mathematical Sciences Peking University Department of Mathematics Brigham Young University Department of Mathematics University of Michigan Ann Arbor the Yangtz Center of Mathematics at Sichuan University
出 版 物:《Chinese Annals of Mathematics,Series B》 (数学年刊(B辑英文版))
年 卷 期:2016年第37卷第2期
页 面:175-192页
核心收录:
学科分类:07[理学] 070104[理学-应用数学] 0701[理学-数学]
基 金:supported by the National Natural Science Foundation of China(Nos.11325101 11271028) the National Security Agency of USA(No.H98230-10-1-0181) the Doctoral Fund of the Ministry of Education of China(No.20120001110060)
主 题:Quantum cohomology Frobenius manifolds Singularity theory Integrable hierarchies
摘 要:The authors prove that the total descendant potential functions of the theory of Fan-Jarvis-Ruan-Witten for D4 with symmetry group J and for D4T with symmetry group Gmax, respectively, are both tau-functions of the D4 Kac-Wakimoto/Drinfeld-Sokolov hierarchy. This completes the proof, begun in the article by Fan-Jarvis-Ruan(2013), of the Witten Integrable Hierarchies Conjecture for all simple(ADE) singularities.