咨询与建议

看过本文的还看了

相关文献

该作者的其他文献

文献详情 >Backward stochastic differenti... 收藏

Backward stochastic differential equations with Young drift

作     者:Joscha Diehl Jianfeng Zhang 

作者机构:Max-Planck Institute for Mathematics in the SciencesLeipzigGermany Department of MathematicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA 

出 版 物:《Probability, Uncertainty and Quantitative Risk》 (概率、不确定性与定量风险(英文))

年 卷 期:2017年第2卷第1期

页      面:112-128页

学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学] 

基  金:supported by the DAAD P.R.I.M.E.program and NSF grant DMS 1413717 

主  题:Rough paths theory Young integration BSDE rough PDE 

摘      要:We show the well-posedness of backward stochastic differential equations containing an additional drift driven by a path of finite q-variation with q∈[1,2).In contrast to previous work,we apply a direct fixpoint argument and do not rely on any type of flow *** resulting object is an effective tool to study semilinear rough partial differential equations via a Feynman–Kac type representation.

读者评论 与其他读者分享你的观点

用户名:未登录
我的评分