Backward stochastic differential equations with Young drift
作者机构:Max-Planck Institute for Mathematics in the SciencesLeipzigGermany Department of MathematicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
出 版 物:《Probability, Uncertainty and Quantitative Risk》 (概率、不确定性与定量风险(英文))
年 卷 期:2017年第2卷第1期
页 面:112-128页
学科分类:07[理学] 0701[理学-数学] 070101[理学-基础数学]
基 金:supported by the DAAD P.R.I.M.E.program and NSF grant DMS 1413717
主 题:Rough paths theory Young integration BSDE rough PDE
摘 要:We show the well-posedness of backward stochastic differential equations containing an additional drift driven by a path of finite q-variation with q∈[1,2).In contrast to previous work,we apply a direct fixpoint argument and do not rely on any type of flow *** resulting object is an effective tool to study semilinear rough partial differential equations via a Feynman–Kac type representation.