Tunable supramolecular hydrogels from polypeptidePEG-polypeptide triblock copolymers
Tunable supramolecular hydrogels from polypeptidePEG-polypeptide triblock copolymers作者机构:Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Sciences School of Polymer Science and Engineering Qingdao University of Science and Technology
出 版 物:《Science China Chemistry》 (中国科学(化学英文版))
年 卷 期:2015年第58卷第6期
页 面:1005-1012页
核心收录:
学科分类:081704[工学-应用化学] 07[理学] 08[工学] 0817[工学-化学工程与技术] 070305[理学-高分子化学与物理] 080501[工学-材料物理与化学] 0805[工学-材料科学与工程(可授工学、理学学位)] 0703[理学-化学]
基 金:financially supported by the National Natural Science Foundation of China for Distinguished Young Scholar(51225306) the CAS-CSIRO Cooperative Research Program(GJHZ1408)
主 题:hydrogel polypeptide N-carboxyanhydride (NCA) ring-opening polymerization (ROP) drug delivery
摘 要:A series of ABA triblock copolymers of poly(?-(2-methoxy ethoxy)esteryl-glutamate)-block-poly(ethylene glycol)-blockpoly(?-(2-methoxy ethoxy)esteryl-glutamate) with poly(ethylene glycol) as middle hydrophilic B block and oligo(ethylene glycol)-functionalized polyglutamate(poly-L-EG2Glu) as terminal A blocks were prepared via ring-opening polymerization of EG2 Glu N-carboxyanhydride(NCA). The resulting P(EG2Glu)-b-PEG-b-P(EG2Glu) triblocks can spontaneously form hydrogels in water. The intermolecular hydrogen bonding interactions between polypeptides blocks were responsible for the formation of gel network structure. These hydrogels displayed shear-thinning and rapid recovery properties, which endowed them potential application as injectable drug delivery system. The mechanical strength of hydrogels can be modulated by copolymer composition, molecular weight and concentrations. Also, it was found that the hydrogels strength decreased with temperature due to dehydration of polypeptide segments. Atomic force microscopy and scanning electron microscopy images revealed that these hydrogels were formed through micelle packing mechanism. Circular dichroism and Fourier transform infrared spectroscopy characterizations suggested the poly-L-EG2 Glu block adopted mixed conformation. A preliminary assessment of drug release in vitro demonstrated the hydrogels can offer a sustained release of doxorubicin(DOX) and the release rate could be controlled by varying chemical composition.